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Abstract—In recent years, the application of multi-objective
evolutionary algorithms (MOEAs) to overlapping community
detection in complex networks has been a hot research topic.
However, the existing MOEAs for detecting overlapping commu-
nities show poor scalability to large-scale networks due to the
fact that the encoding length of individuals is usually equal to
the number of all nodes in the network. To this end, we suggest a
reduced mixed representation based multi-objective evolutionary
algorithm named RMR-MOEA for large-scale overlapping com-
munity detection, where the length of the individual is recursively
reduced as the evolution proceeds. Specifically, a mixed represen-
tation is adopted for fast encoding and decoding the individual
in the population, which consists of two parts: one represents
all potential overlapping nodes and the other represents all non-
overlapping nodes. Then, in each individual length reduction,
two strategies are suggested to respectively shorten the length of
each part in the mixed representation, with the aim to greatly
reduce the search space. Finally, the experimental results on 10
real-world complex networks demonstrate the effectiveness of the
proposed RMR-MOEA in terms of both detection performance
and running time, especially on large-scale networks.

Index Terms—large-scale complex network, multi-objective
optimization, evolutionary algorithm, overlapping community
detection, mixed representation.

I. INTRODUCTION

Community detection is a very vital tool for uncovering

the information on all kinds of complex systems in a number

of domains, such as the internet network [1], biological

network [2], and social network [3]. Specifically, the task of

community detection is to divide a network into several groups

of nodes (i.e. communities) based on the topology structure

∗Authors contributed equally to this work.

of the network, where nodes in the same community have a

tight connection while nodes in different communities have

a sparse connection [4]. Thus, this task can be formulated

as a multi-objective optimization problem by simultaneously

maximizing the number of internal links in communities and

minimizing the number of external links between differen-

t communities [5]. To this end, designing effective multi-

objective evolutionary algorithms (MOEAs) for community

detection in complex networks has attracted a large number

of researchers, due to the fact that MOEAs can return a set of

Pareto optimal solutions for multiple selections and overcome

some potential disadvantages such as the limited resolution of

modularity.

Among the existing MOEA-based community detection

algorithms, many researchers devote themselves to designing

non-overlapping community detection algorithms, where each

one node must belong to one and only one community [6]–

[13]. However, some nodes in real-world communities often

belong to two or more communities. For example, in a scientist

collaboration network, one person might be a member of “ma-

chine learning” community and “evolutionary computation”

community simultaneously. In a social network, one person

might be a member of “football” community as well as a

member of “basketball” community. To this end, researchers

began to focus on designing overlapping community detection

algorithms based on MOEAs, where each node in real-world

networks may belong to two or more communities.

For example, in 2010, Liu et al. [14] proposed an MOEA

based algorithm named MEA-CDPs to detect separated and

overlapping communities simultaneously. After that, they ex-

tended MEA-CDPs for signed network and proposed another978-1-7281-8393-0/21/$31.00 c©2021 IEEE
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MOEA based algorithm named MEAs-SN for detecting both

separated and overlapping communities [15]. However, the

search space of these two algorithms increases exponentially

as the number of nodes in the network goes up. In 2015, Li

et al. [16] developed an improved multi-objective quantum-

behaved particle swarm optimization named IMOQPSO on

the basis of spectral clustering, which was verified on the

small scale real-world and synthetic networks. In 2017, Wen et

al. [17] proposed a maximal clique based MOEA, termed MC-

MOEA, for detecting overlapping communities. However, the

large number of communities and the long individual length

may result in the performance degradation. In 2017, Zhang et

al. [18] proposed a mixed representation based MOEA named

MR-MOEA for detecting overlapping communities, where a

mixed individual representation scheme was designed to fast

encode and decode the overlapping division of networks. In

2020, Tian et al. [19] proposed a multi-objective evolutionary

optimization based fuzzy method (named EMOFM) for over-

lapping community detection. However, the time complexity

of the algorithm is still high, since it has to find overlapping

nodes by optimizing fuzzy threshold of every node in the

network.

Recently, Ma et al. [20] proposed a local-to-global scheme

based MOEA (named LG-MOEA) for overlapping community

detection on large-scale complex networks. Specifically, LG-

MOEA consists of two stages, that is, a local community

structure detection stage and a community structure determi-

nation stage. In the first stage, an MOEA with the proposed

community boundary control strategy was suggested to detect

the multiple possible local community structures instead of

directly detecting the global community partition on the whole

network, thus LG-MOEA can deal with large-scale networks.

Then, in the second stage, the global overlapping community

partition of the whole network was determined by a single

objective EA.

Experimental results on different complex networks have

demonstrated the superiority of these MOEA-based overlap-

ping community detection methods over traditional ones. How-

ever, these MOEA-based algorithms still show poor scalability

to large-scale networks because of the curse of dimensionality,

since the individual length of encoding a network is equal

(or proportional) to the number of nodes in the network.

In other words, the individual representation length of these

algorithms remains stable as the evolution proceeds. To this

end, different from the above MOEAs, in this paper, we

propose a reduced mixed representation based multi-objective

evolutionary algorithm named RMR-MOEA for large-scale

overlapping community detection, where the length of indi-

vidual is recursively reduced as the evolution proceeds.

To be specific, the mixed representation proposed in [18]

is adopted for rapidly encoding and decoding the network

divisions, where the nodes are classified into potential overlap-

ping nodes and non-overlapping nodes. Then, in each length

reduction of individual, the historical information is used

to fix potential overlapping nodes, while the local commu-

nities that existed in elite individuals are used to shorten

non-overlapping nodes. These two strategies can be used in

RMR-MOEA to greatly reduce the search space. Finally, the

effectiveness and efficiency of the proposed RMR-MOEA

are verified on 10 real-world networks, and the experimental

results demonstrate that RMR-MOEA is superior over several

representative baseline algorithms for overlapping community

detection, especially on large-scale networks.

II. THE PRELIMINARIES

In this section, we first give some preliminaries about

overlapping community detection problem, and then present

the adopted mixed-representation scheme for decoding over-

lapping communities.

A. Multi-Objective Overlapping Community Detection

In this paper, we consider only undirected and unweighted

complex network. We use a graph denoted as G = (V,E) to

represent a network, where V = {v1, v2, · · · , vn} denotes the

set of all nodes in G and E = {(i, j)|vi ∈ V, vj ∈ V and i 6=
j} denotes the set of all edges in G. Given a network G,

the task of overlapping community detection is to divide the

nodes in G into a set of communities or groups, where each

node maybe belong to two or more communities. Formally,

the set of all detected communities in G is denoted as C =
{C1, C2, . . . , Ck}, where Ci satisfies the following conditions:

Ci ⊂ V and Ci 6= ∅, i = 1, 2, ..., k (1)

Ci 6= Cj , ∀i 6= j and i, j ∈ {1, 2, ..., k} (2)

Ci ∩ Cj 6= ∅, ∃i 6= j and i, j ∈ {1, 2, ..., k} (3)

k⋃

i=1

Ci = V (4)

Note that each community is a proper subset of V and the
joint set of all communities is equal to V .

In the community detection problem, nodes in the same

community have a tight connection while nodes in differ-

ent communities have a sparse connection. To this end, the

community detection problem in EAs can be modeled as

a multi-objective optimization problem with two conflicting

objectives [8], [16], [17]. To be specific, the first objective is

to maximize the intra-link density, that is, link density between

nodes in the same community. The other one is to minimize

the inter-link density, that is, link density between nodes in

different communities. Note that, several criteria are proposed

for measuring intra-link and inter-link densities. In this paper,

the kernel k-means (KKM ) [3] is adopted for measuring

intra-link density, while the ratio cut (RC) [21] is chosen for

measuring inter-link density.

Given a network G = (V,E), suppose one division of G
with k communities denoted as C = {C1, C2, . . . , Ck}. Let

A be the adjacent matrix. Given one community Cm and

Cm = C − Cm, L(Cm, Cm) is defined as
∑

i∈Cm,j∈Cm
Aij

and L(Cm, Cm) is defined as
∑

i∈Cm,j∈Cm
Aij . Based on

the above definitions, the two measures (KKM and RC) are

formally defined as:
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minimize























KKM = 2(|V | − k)−

k
∑

i=1

L(Ci, Ci)

|Ci|

RC =
k

∑

i=1

L(Ci, Ci)

|Ci|

(5)

From the above definitions, it can be observed that KKM
can be considered as the sum of the intra-link densities,

while RC can be considered as the sum of the inter-link

densities. Thus, minimizing KKM and RC simultaneously

can guarantee that the links within one community are dense

while that between communities are sparse.

B. The Mixed-Representation Scheme

In this paper, the mixed representation suggested in [18] is

used for fast encoding and decoding the network divisions.

Specifically, the nodes in the network are classified into two

groups: one group of candidate overlapping nodes and the

other group of non-overlapping nodes. The length of this

mixed-representation is equal to the size of the network, where

the group of candidate overlapping nodes is denoted as the

overlapping part of the individual and the group of non-

overlapping nodes is denoted as the non-overlapping part of

individual. The status for each candidate overlapping node can

be ‘0’ or ‘-1’, where ‘0’ indicates the corresponding node is

an overlapping node while ‘-1’ indicates the corresponding

node is not an overlapping node. The status for each non-

overlapping node can be the index of itself or its neighbor.

For this mixed representation, it is easy and fast to decode the

individual. Specifically, for decoding non-overlapping nodes,

all nodes connected belong to one community. As for each

candidate overlapping node, if its label is ‘0’, then this node

is assigned to all communities which the node connects to.

Otherwise, if its label is ‘-1’, then this node is assigned to the

connected community with the maximum number of neighbors

in this community. For the non-overlapping part, instead of the

vector based individual representation scheme used in [18], the

locus-based one is adopted in this strategy.

Fig. 1 presents an example to illustrate the mixed-

representation. In this example, there are eight nodes in

the network, where the group of candidate overlapping n-

odes is {4, 5} and the group of non-overlapping nodes is

{1, 2, 3, 6, 7, 8}. One individual ind is 〈0,−1, 2, 3, 1, 7, 8, 6〉.
When decoding the non-overlapping part, there are two local

communities {1, 2, 3}, {6, 7, 8}. When decoding the overlap-

ping part, the node 5 with status ‘-1’ is assigned to the local

community {6, 7, 8} since it has three links which are larger

than one link with the local community {1, 2, 3}. The node

4 with status ‘0’ is assigned to the two local communities

simultaneously. Thus, the final network divisions for ind are

{1, 2, 3, 4}, {4, 5, 6, 7, 8}.

III. THE PROPOSED ALGORITHM RMR-MOEA

In this section, we first present two individual length re-

duction strategies, and then give the general framework of the

proposed algorithm RMR-MOEA.

3

2

1
5

4

6

7

8 3
2

1 5
4 7
6 8

4 5 1 2 3 6 7 8

0 -1 2 3 1 7 8 6

Vertex

Genotype

Communities

4

Encode Decode

Fig. 1. An illustrative example for the mixed-representation.

A. The Individual Length Reduction Strategies

In this subsection, we give two strategies for respectively

shortening the individual length of overlapping part and non-

overlapping part in the mixed representation.
1) The Historical Information Based Strategy for Fixing

Overlapping Part: The main motivation of fixation strategy is

based on the following observation. For candidate overlapping

nodes, as the population evolves, they are gradually identified,

so we can fix some candidate overlapping nodes that change

stagnantly in previous generations. Hence, there are three main

problems that need to be solved, that is, (1) which nodes

should be fixed? (2) how many nodes should be fixed in the

current population? and (3) what status of the fixation node

is?

Firstly, we design a change matrix (denoted as CM ) to

record the historical information for each node in each popula-

tion tk, i.e., the total number of individuals in each generation

whose corresponding node i has not changed in the previous

generation, which is denoted as TNi,k. In the second step, we

use CM to calculate the number of individuals fixed in current

population for each candidate overlapping node i (denoted as

FNi), and FNi = ⌈
∑K

k=1
TNi,k/K⌉ (K is the number of rows

in CM ). Then, FNi individuals are randomly selected from

the current population (suppose indl1, indl2, ..., indlFNi
) for

fixation of node i. Finally, we use the elite individuals of the

current generation to vote the status of the fixation node i,
denoted as Si. To be specific, we choose more than half of the

elite individuals with the same status as the fixed node’s status.

If the number of votes is the same, randomly choose the status

of an overlapping node or the status of non-overlapping node.

Then we get a fixation matrix (denoted as FM ) by setting

FMlk,i (k=1,2,3...FNi) as Si. Algorithm 1 presents the main

procedure of the proposed strategy for fixing overlapping part.

Fig. 2 presents an example to illustrate the fixation operator,

where CM preserves the historical information of the previous

three generations and suppose there are three individuals in

current population. In CM , the element CMtn−3,N3
= 3

means that there are three individuals where the status of node

N3 has not changed in the tn−3 generation. For example, as

for node N3, we first calculate its fixation number, which

is denoted as FN3 and FN3 = ⌈5/3⌉ = 2. Then, we

randomly select two individuals from the current population,

suppose P1 and P3 are selected to be fixed. Note that suppose
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FM N1 N2 N3 N4 N5

P1 U O O N O

P2 U U U N O

P3 U U O N O

CM N1 N2 N3 N4 N5𝒕𝒏−𝟑 2 1 3 2 3𝒕𝒏−𝟐 0 0 1 3 2𝒕𝒏−𝟏 0 2 1 3 3

P1 -1 0 0 -1 0

P2 0 -1 0 -1 0

Pareto Front

Step 1 Step 2Step 3

Fig. 2. An illustrative example for the historical information based strategy for fixing overlapping part, where the fixation matrix is denoted as FM , O
represents overlapping node, N represents non-overlapping node and U represents uncertain node.

Algorithm 1: Evo-Fixation(CM,P )

Input: P : the population; CM : the change matrix;
Output: FM : the fixation matrix;

1: K ← the number of rows in CM ;
2: NodeNum← the number of nodes in the network;
3: Elites← get the elite individuals of P by non-dominated

sorting;
4: for i = 1 to NodeNum do
5: Si ← get the status of node i by voting in Elites;
6: end for
7: for i = 1 to NodeNum do
8: FNi ← ⌈

∑K

k=1
TNi,k/K⌉;

9: Randomly select FNi individuals (suppose
indl1, indl2, ..., indlFNi

) in current population to fix;
10: for j = 1 to FNi do
11: FMlj,i

.
= Si ;

12: end for
13: end for

there are two elite individuals P1 and P2 in the current

population and the status of node N3 in P1 and P2 are the

same (i.e. 0) so S3 is denoted as O. Therefore, the value of

N3 in fixation matrix FM is fixed as overlapping node, i.e.,

FMP1,N3
= O and FMP3,N3

= O. As for node N4, the

fixation number FN4 = ⌈8/3⌉ = 3 and the status of node

N4 in the two elite individuals P1 and P2 are the same so

S4 is denoted as N , thus, the value of N4 in fixation matrix

FM is fixed as non-overlapping node, i.e., FMP1,N4
= N ,

FMP2,N4
= N and FMP3,N4

= N . Similarly, for node N5,

FMP1,N5
= O, FMP2,N5

= O and FMP3,N5
= O. From

the above procedure, we can find that the number of fixed

individual of overlapping part in the mixed representation can

be increasing as the population evolves, so that the search

space will be reduced.

2) The Local Communities Based Strategy For Reducing

Non-Overlapping Part: The local community information is

utilized to reduce the non-overlapping nodes since there often

exist some nodes that belong to the same community in

different population individuals. In other words, we get the

same local community structure in elite individuals to merge

as one new node to reduce the non-overlapping part. This idea

is borrowed from [13]. To be specific, we first utilize non-

dominant sorting to get the elite solutions which are denoted as

P 1. Note that each individual represents a network division

consisting of several communities.

The network reduction method is performed as follows. The

individual ind1 with the largest number of communities in

P 1 is selected. Then, for each community Ci in ind1, if

all nodes in Ci are identified as in one community by the

remaining elite individuals, then Ci is considered as a local

community. Otherwise, we will regard the maximal subset

of Ci which is belonged one community in remaining elite

individuals as a local community. Lastly, a reduced network

GR is obtained by merging each local community into one

node in G, and a population PR for the reduced network GR

is obtained by merging the nodes of each local community

for all individuals in P . For each individual, an index of

the local community is assigned to the merged gene and the

community information on the rest genes in the individual

keeps unchanged. Algorithm 2 presents the main procedure of

the proposed strategy for reducing non-overlapping part.

Algorithm 2: Local-Merge(G,P )

Input: G: the complex network; P : the population;
Output: GR: the reduce network;

1: P 1← the non-dominated solutions in P ;
2: INum← the number of individuals in P 1;
3: ind1← the individual in P 1 with the largest number of

communities;
4: ComNum← the number of the communities in ind1;
5: for i = 1 to ComNum do
6: MerCi ← the nodes set of ith community in ind1;
7: for j = 2 to INum do
8: indj Ck ← the kth community of j individual, which

has the most number of indj Ck ∩MerCj ;
9: MerCi ← indj Ck ∩MerCi;

10: end for
11: CR ← Merge MerCi into one node;
12: end for

Fig. 3 presents an example to reduce the length of non-

overlapping part. As shown in this figure, the local community

{1,2,3} is found since it appears in both Ind1 and Ind2. Then,

the local community {1,2,3} is considered as one node in the

further evolution, thus the length of non-overlapping part is

reduced from 7 to 3.

Combined with the above two strategies, it can be found that

the individual length can be greatly reduced as the population

evolves.

B. The General Framework

Based on the two individual length reduction strategies

above, we present the general framework of RMR-MOEA,

which is similar to MR-MOEA [18]. The RMR-MOEA con-

sists of three steps. At the first step, the network is reduced by

using the local topology structure of the network according to

a pre-reduction method [13]. The candidate overlapping nodes
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641
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Fig. 3. An example of the reduced strategy for non-overlapping nodes. The local communities information is utilized to shorten the size of non-overlapping
nodes by merging each local community as one node.

O are found according to the method proposed in [18], and

the size of O is denoted as os.

At the second step, a population with pop individuals is

initialized based on the mixed-representation. Specifically,

each individual has two parts, the overlapping part, Xi[1 : os],
represents candidate overlapping nodes, randomly assigned

with -1 or 0, which is binary encoding. The non-overlapping

part, Xi[os + 1 : end], represents non-overlapping nodes,

randomly assigned with the index of its neighbors or itself. The

velocity is assigned with the vector 0. The reference point z∗ is

initialized by using the best values of two optimized objectives

KKM and RC (see Eq. (5)) in the initial population. For

each weight vector λi, 1 ≤ i ≤ pop, the Euclidean distances

from all individuals in population P to weight vector λi are

calculated and ns individuals in P with the nearest Euclidean

distances to λi are regarded as the neighbors of λi, denoted

as Ni, where ns is a predefined parameter. We initialize the

CM assigned with the 0 and the FM with the status of U
(uncertain node).

At the third step, during the evolution, we firstly randomly

select an individual from Nj as the Gbesti of Xi. Then the

new velocity Vi will be computed by Gbesti and Pbesti. The

new position childi[1 : os] are generated by Vi, utilizing the

particle swarm optimization (PSO) algorithm operator [22].

For reducing the search space, we utilize the algorithm1 to

fix the position. The new position childi[os + 1 : end] are

generated by Genetic algorithm(GA) operators like crossover

and mutation [21]. If the Tchebycheff value of chlidi is

better than an individual in Nj , then replace the individual

and update reference point z∗. We will record the change

information in CM and if the childi dominates Pbesti, we

will update the Pbesti. When i-th generation satisfying that

i | (⌈(maxgen+1)/(T+1)⌉) == 0, we run the suggested two

individual length reduction strategies for current population,

where T is a parameter for controlling the number of strategies

executed and naturally the number of rows in CM is set T .

As the length of population may change, we should update

the P and z∗. Algorithm 3 gives the main procedure of RMR-

MOEA.

IV. EXPERIMENTAL RESULTS

In this section, we first give experimental settings, including

comparison algorithms, real-world networks and evaluation

Algorithm 3: General Framework of RMR-MOEA

Input: G: the complex network; gene: the number of generations;
pop: the size of population; {λ1, λ2, . . . , λpop}: the set of
weight vectors; ns: the size of neighbours; pc: crossover
probability, pm: mutation probability; T : the times of running
the individual length reduction strategies; c1, c2:the learning
factors; w:the inertia weight;

Output: Optimal solutions
Step1: the candidate overlapping nodes and subgraph
finding

1: O ← utilize candidate overlapping nodes finding method
in [18] and get the size of O denoted as os;

2: GR ← utilize the pre-reduction method in [13] for G;
3: Step2: initialization
4: Position initialization:P = {X1, X2, . . . , Xpop};
5: Pbest initialization:Pbest = {X1, X2, . . . , Xpop}
6: Velocity initialization:V = {V1, V2, . . . , Vpop}
7: Change matrix initialization: CM = {0, 0, 0...};
8: Fixation matrix initialization: FM = {U,U, U...};
9: Initialize reference point z∗;

10: Step3: population evolution
11: N = {N1, N2, . . . , Npop} ← obtain the neighbors of each

individual by computing Euclidean distance based on the set of
weight vectors;

12: for t = 1 to gene do
13: if i | (⌈(maxgen+ 1)/(T + 1)⌉) == 0 then
14: [FM,PR]← execute historical information based strategy

for fixing overlapping part (Evo-Fixation(CM , P ));
15: [GR, PR]← execute the local communities based strategy

for reducing non-overlapping part (Local-Merge(G, P ));
16: Update P and reference point z∗ based on GR;
17: end if
18: for i = 1 to pop do
19: Randomly select one individual from Ni as Gbesti;
20: Vi ← compute velocity by Pbesti and Gbesti;
21: childi[1 : os]← generate child by PSO operators and

utilize the FM to fix;
22: childi[os+ 1 : end]← generate child by GA operators;
23: Compute objective function;
24: Update P ;
25: Record position change in CM ;
26: Update reference point z∗ and Pbesti;
27: end for
28: end for

criterion. Then, we present the comparison results between

RMR-MOEA and baselines.
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A. Experimental Settings

1) Comparison Algorithms: In this paper, five represen-

tative algorithms are chosen to compare with the pro-

posed RMR-MOEA. Specifically, RMR-MOEA is compared

with four MOEA-based overlapping community detection

algorithms (namely IMOQPSO [16], MCMOEA [17], LG-

MOEA [20] and MR-MOEA [18]) and one non-MOEA-based

algorithm LMD [23]. For each baseline algorithm, we use

the code provided by the author and adopt its parameters

suggested in their paper.

For a fair comparison, in the four MOEA-based algorithms,

the population size PS is all set to 100 and the maximum

number of generations gene is set to 100. The experimental

results for all algorithms are obtained by averaging over 15

independent runs. All the experiments are carried out on

computers with Intel Core i7-8700K 3.70 GHz CPU, 32-GB

RAM and Windows 10 operating system.
2) Real-World Networks: We adopt 10 popular real-world

networks with different characteristics to evaluate the perfor-

mance of comparison algorithms. These networks are Zacharys

karate club [24], Dolphin social network [25], American

college football [26], Books about US politics [26], Scientist

collaboration network [25], Yeast PPI dataset [27], Blogs

network [18], CA-HepTh1 [28], PGP [29], CA-HepTh2 [28].

The characteristics of these networks are given in Table I.

Note that karate, dolphin, football, polbooks, are networks

with ground truth community structure.

TABLE I
10 REAL-WORLD NETWORKS WITH DIFFERENT CHARACTERISTICS.

Networks Nodes Edges Ave. Degree Real Clusters
karate 34 78 4.59 2

dolphin 62 159 5.13 2
football 115 613 10.66 12
polbook 105 441 8.4 3

netscience 1,589 2,742 3.45 Unknown
PPI 2,456 6,265 5.26 Unknown

blogs 3,984 6,803 3.41 Unknown
ca-HepTh1 9,877 25,998 5.26 Unknown

PGP 10,680 24,316 4.55 Unknown
ca-HepTh2 12,008 118,521 19.74 Unknown

3) Evaluation Criterion: In this paper, we adopt the gen-

eralized normalized mutual (gNMI) [30] and the extended

modularity Qov to evaluate the quality of overlapping com-

munities detected.
The gNMI is used to measure the similarity between de-

tected community partition and the real community partition.
Specifically, gNMI can be utilized and defined as follows.

gNMI(Ct, Cd) =
−2

∑k1

i=1

∑k2

j=1
Mij log

MijN

Mi∗M∗j

∑k1

i=1
Mi∗ log(

Mi∗

N
) +

∑k2

j=1
M∗j log(

M
∗j

N
)
(6)

where Ct represents the true community division, Cd is a

community division that is to be evaluated detected by an

algorithm. k1 and k2 denote the numbers of communities in Ct

and Cd respectively. M represents the confusion matrix. The

number of rows and columns of M are k1 and k2 respectively.

Mij is the number of shared nodes in the i-th community of Ct

and the j-th community of Cd. Moreover, Mi∗ is the number

summed by M in row i, and M∗j is the number summed

by M in column j. The number of nodes in the network is

denoted as N . When gNMI is 1, it represents that the reality

of network community division is found completely by the

algorithm. The larger the gNMI is, the better the performance

of the algorithm is.

The another criterion Qov is measured for the detected over-

lapping communities when the truth community division is

unknown. Specifically, Qov can be calculated by the following

formula.

Qov =
1

2m

∑

k

∑

i,j∈Ck

1

PiPj

(Aij −
didj
2m

) (7)

where the number of edges in network is m. Ck represents

the k-th community in division. di and dj represent the

node degree of node i and j respectively. The number of

communities i belongs to is Pi. Aij indicates the value of

the adjacency matrix A in the i-th row and j-th column. Note

that the larger Qov is, the better the quality of the overlapping

communities division is.

B. The Comparison Results between RMR-MOEA and Base-

lines

In the following, we first give the comparison results in

terms of Qov on 10 real datasets, and then present the

comparison results in terms of gNMI on the four real datasets

with ground truth community structure. Finally, the running

time between RMR-MOEA and baseline RMR-MOEA is also

compared. Note that, the best value of Qov and gNMI
in the obtained non-dominated solution of the MOEA-based

algorithms is used for comparison since this way has been

widely adopted in existing MOEA-based community detection

algorithm for comparing the performance [17], [18].

1) Experimental Results in Terms of Qov: Table II shows

the Qov values of the proposed algorithm RMR-MOEA and

the other five community detection algorithms on the 10 real-

world networks. We adopt the Wilcoxon rank sum test at a sig-

nificance level of 0.05 to evaluate the statistical difference of

the performance of comparison algorithms, where the symbols

’+’, ’-’ and ’≈’ indicate that the result is significantly better,

significantly worse and statistically similar to that obtained

by RMR-MOEA, respectively. From this table, we can find

that the proposed RMR-MOEA achieves the best performance

on most of the real-world networks in terms of Qov . The

baseline MR-MOEA or LG-MOEA achieve the second best

performance on most of the real-world networks.

2) Experimental Results in Terms of gNMI: In order

to further show the performance of the proposed algorithm,

we also adopt gNMI as the performance metric. However,

gNMI can only be used in the datasets with the ground

truth community structure. In our experiments, there are four

datasets with real community structure. Table III shows the

gNMI values of RMR-MOEA and the other five community

detection algorithms. From this table, it can be found that the

proposed RMR-MOEA achieves the best performance on most
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TABLE II
THE COMPARISON RESULTS OF Qov ON THE 10 REAL-WORLD NETWORKS, WHERE SYMBOLS ‘+’, ‘-’ AND ‘≈’ INDICATE THAT THE PERFORMANCE IS

SIGNIFICANTLY BETTER, SIGNIFICANTLY WORSE AND STATISTICALLY SIMILAR TO THAT OF RMR-MOEA, RESPECTIVELY. NOTE THAT ‘/’ MEANS THAT

Qov VALUE IS NOT PROVIDED HERE SINCE THE RESULT CANNOT BE OBTAINED WITHIN 14 HOURS FOR ONE RUN.

Network Metric RMR-MOEA MR-MOEA IMOQPSO MCMOEA LMD LGMOEA

karate

Qov max 0.223 0.230 0.184 0.212 0.216 0.210

Qov avg 0.219(10.8s) 0.221
≈(25.3s) 0.196− 0.209− 0.211− 0.208−

Std 0.001 0.004 0.006 0.006 0.003 0.003

dolphin

Qov max 0.274 0.271 0.153 0.213 0.261 0.253

Qov avg 0.268(17.1s) 0.261−(56.1s) 0.132− 0.199− 0.252− 0.232−

Std 0.003 0.006 0.008 0.009 0.017 0.015

football

Qov max 0.303 0.302 0.235 0.279 0.291 0.300

Qov avg 0.298(24.9s) 0.297≈(90.7s) 0.229− 0.274− 0.284− 0.296≈

Std 0.001 0.004 0.005 0.005 0.007 0.004

polbook

Qov max 0.269 0.265 0.172 0.239 0.259 0.267

Qov avg 0.266(22.3s) 0.262−(78.3s) 0.165− 0.215− 0.250− 0.245−

Std 0.001 0.002 0.012 0.013 0.009 0.015

netscience

Qov max 0.473 0.470 0.289 0.453 0.397 0.375

Qov avg 0.470(866s) 0.465−(2030s) 0.247− 0.449− 0.395− 0.372−

Std 0.002 0.002 0.033 0.002 0.015 0.014

PPI

Qov max 0.291 0.310 0.256 0.207 0.277 0.293

Qov avg 0.280(3243s) 0.301
+(7773s) 0.252− 0.199− 0.274− 0.283≈

Std 0.003 0.002 0.030 0.004 0.002 0.003

blogs

Qov max 0.372 0.394 0.340 0.156 0.322 0.395

Qov avg 0.369(5605s) 0.385+(13970s) 0.336− 0.144− 0.317−
0.393

+

Std 0.002 0.008 0.006 0.024 0.014 0.015

ca-HepTh1

Qov max 0.271 / 0.245 0.107 0.215 0.291

Qov avg 0.269(27378s) / 0.104− 0.104− 0.213−
0.288

+

Std 0.001 / 0.003 0.002 0.001 0.001

PGP

Qov max 0.368 / / / 0.342 0.388

Qov avg 0.365(26193s) / / / 0.341−
0.385

+

Std 0.002 / / / 0.001 0.015

ca-HepTh2

Qov max 0.216 / / / / /
Qov avg 0.213(45573s) / / / / /

Std 0.001 / / / / /
+/−/≈ — 2/6/2 0/10/0 0/10/0 0/10/0 3/6/1

of the real-world networks in terms of gNMI . The baseline

MR-MOEA achieves the second best performance.

3) Experimental Results in Terms of Running Time: For

large-scale community detection problems, running time is

also a very important criterion to evaluate the performance.

In order to show the efficiency of RMR-MOEA, we compare

RMR-MOEA with MR-MOEA in terms of running time.

Table II also shows the average running time values of

RMR-MOEA and MR-MOEA, where the values are in the

parentheses behind Qov avg value. As can be found from this

table, RMR-MOEA takes much less time than MR-MOEA on

all networks, especially for large-scale networks. For example,

for network ca-HepTh1, MR-MOEA can not obtain the result

within 14h for only one run while RMR-MOEA can get the

final result with 7.6h (27,378s).

Based on the empirical results shown in Tables II and III,

we can conclude that the proposed RMR-MOEA algorithm

holds a competitive performance in terms of both detection

performance (Qov and gNMI) and running time on real-

world networks. The better performance of RMR-MOEA is

attributed to the proposed individual length reduction strate-

gies, which can be used to greatly reduce the search space.

V. CONCLUSIONS

In this paper, we proposed a reduced mixed representation

based multi-objective evolutionary algorithm named RMR-

MOEA for overlapping community detection on large-scale

complex networks, where the length of the individual is

recursively shortened as the evolution proceeds. To be specific,

we adopt a mixed representation suggested in MR-MOEA for

fast encoding and decoding the individual, which consists of

potential overlapping nodes part and non-overlapping nodes

part. Then, in each length reduction of individual, the historical

information was used to fix potential overlapping nodes, while

the local communities existed in elite individuals were used

to reduce non-overlapping nodes. Based on these two length

reduction strategies, the search space of RMR-MOEA can be

greatly reduced. Finally, we compared RMR-MOEA with five

representative baselines on 10 real-world complex networks

and the experimental results demonstrate the effectiveness of

the proposed RMR-MOEA in terms of both detection perfor-

mance and running times, especially on large-scale networks.
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TABLE III
THE COMPARISON RESULTS OF gNMI ON THE FOUR REAL-WORLD NETWORKS WITH GROUND TRUTH, WHERE SYMBOLS ‘+’, ‘-’ AND ‘≈’ INDICATE

THAT THE PERFORMANCE IS SIGNIFICANTLY BETTER, SIGNIFICANTLY WORSE AND STATISTICALLY SIMILAR TO THAT OF RMR-MOEA, RESPECTIVELY.

Network Metric RMR-MOEA MR-MOEA IMOQPSO MCMOEA LMD LGMOEA

karate

gNMI max 1 1 0.634 0.918 0.422 1

gNMI avg 1 1≈ 0.491− 0.839− 0.365− 0.836−

Std 0 0.092 0.061 0.030 0.081 0.065

dolphin

gNMI max 1 1 0.221 0.176 0.611 0.888

gNMI avg 0.971 0.878− 0.137− 0.198− 0.287− 0.5316−

Std 0.028 0.024 0.017 0.026 0.009 0.312

football

gNMI max 0.828 0.821 0.226 0.300 0.781 0.801

gNMI avg 0.801 0.784− 0.209− 0.274− 0.744− 0.779−

Std 0.026 0.028 0.044 0.013 0.029 0.031

polbook

gNMI max 0.500 0.500 0.296 0.192 0.233 0.395

gNMI avg 0.500 0.419− 0.219− 0.168− 0.199− 0.331−

Std 0.000 0.004 0.042 0.046 0.032 0.063
+/−/≈ — 0/3/1 0/4/0 0/4/0 0/4/0 0/4/0
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